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Abstract: Harmony search (HS) is a new meta-heuristic optimization method inspired from improvisation process in 

jazz music searching for a perfect state of harmony. HS has been improved based on parameters settings updating 

and hybridization. In this paper, HS and four of its variants are compared via Wilcoxon and Friedman nonparametric 

tests using benchmark functions. Statistical analysis highlights the Global best harmony search as the best variant. 

Harmony Search algorithm and its variants are also applied to adjust the gains of PID controller of an inverted 

pendulum nonlinear system giving remarkable results when compared to genetic algorithm.  
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1. Introduction 

Analytical methods are widely used to solve 

optimization problems giving an exact solution to 

minimize or maximize a given function by verifying 

a set of constraints. 

In some cases, the problem sizes may hinder the 

calculation efficiency and/or the solution is obtained 

in very large time. These drawbacks could be 

figured out by using meta-heuristics.  

Meta-heuristics are nature inspired optimization 

methods, easy to implement to different problems 

and although aiming to find a high quality solution, 

they cannot pretend to produce the exact solution in 

every case with certainty. Nevertheless, a high 

quality approximation of a global optimum is probably 

more valuable than a deterministic poor quality local 

minimum provided by an exact method or no solution 

at all. [1].  
As free lunch theorem suggests [14], there is no 

best algorithm for all problems but the variety of 

these algorithms could lead ones to decide for the 

best one in optimization of problems with partial 

knowledge, which is not a trivial task. This decision 

could be taken using experimental analysis and 

graphical comparison but the result is not reliable 

and could not be generalized [5, 12].  

Statistical inference could be used in the 

analysis of empirical results obtained by the 

algorithms. It shows how well a sample of results 

satisfy a certain hypothesis and if the obtained 

conclusions can be generalized beyond what was 

tested [18]. 
The Harmony Search (HS) algorithm is an 

emerging optimization meta-heuristic inspired from 

the underlying musicians harmony improvisation 

process [3, 4]. When musicians want to compose a 

harmony, they usually try various possible 

combinations of musical pitches stored in their 

memories. Harmony Search algorithm had been 

applied very successful in a variety of optimization 

problems ([5],[7],[6], [9]).  

In HS algorithm, diversification is achieved by 

generating a new solution after considering all of the 

existing vectors and both pitch adjustment and 

random consideration. These features increase the 

flexibility of HS algorithm and produce better 

solutions. 

Recently, the interest in harmonic search 

algorithm has led the researchers to enhance and 

develop new variants exploring two aspects: 

improvement of parameters settings, and hybridizing 
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HS with other meta-heuristics. Among these 

interesting variants, we will focus over the Improved 

harmony search algorithm (IHS) [7], Global-best 

harmony search (GHS) [8], Self-adaptive Harmony 

Search (SAHS) [9] and Adaptive Harmony Search 

(AHS) [10].  

In this paper, statistical analysis is achieved over 

harmony search and its variants to extract reliable 

and generalized conclusion on the best harmony 

search variant in function optimization in order to 

find the optimal gains of a PID controller. 

The conditions of safe use of parametric tests 

have not been satisfied so nonparametric are carried 

out in single and multiple problem analysis with 

Wilcoxon and Friedman tests. This analysis will be 

conducted in two steps: 

First, the original HS algorithm and the four 

variants will be used to minimize known benchmark 

functions and compared statistically using the 

Wilcoxon and Friedman nonparametric tests. 

Second, real world application is also presented 

where the harmonic search optimization algorithms are 

applied in an optimization via simulation process to 

determine an optimum structure of PID controller in 

order to have the best performance of an inverted 

pendulum. 
The remainder of this paper is organized as 

follows: In section II, harmony search algorithm is 

detailed and four of its variants are presented in section 

III. Results of statistical analysis using benchmark 

functions and nonparametric tests are highlighted in 

section IV. Section V is dedicated to design a tuning 

procedure to adjust the PID controller gains. 

Simulations results are shown in section VI where the 

harmony search algorithm and its variants are 

compared to genetic algorithm to adjust the PID 

controller for an inverted pendulum. 

2. Harmony search optimization 

The Harmonic search algorithm is a new meta-

heuristic based on typical music performance 

processes that occur when musicians are seeking for 

better state of harmony, as for improvisation in jazz. 

It was developed by [4] who conceptualized the use 

of musical process for a perfect state of harmony. 

The optimization process can be compared to a 

process of improvisation of jazz musician [3]. The 

details of the analogy between musical 

improvisation and optimization are shown in Figure. 

1.  

 

Figure.1 Analogy between musical improvisation and 

optimization 

2.1 Harmony search parameters settings 

An optimization problem could be written as 

follows: 

 

𝑀𝑖𝑛  𝑓(𝑥𝑖) 

𝑥𝑖 ∈  𝑆𝑖  , 𝑖 = 1,2, …𝑁 

(1) 

where f(xi) is the function to be optimized,  xi  
are the N decision variables. 

The decision variables and their corresponding 

objective function values are stored in a matrix 

called Harmony memory. The HMCR and PAR 

parameters are used to improve the solution and 

ensure intensification and diversification processes 
respectively.  

The computational procedure of HS is described in 

Figure 2 [4] and the parameters of the algorithm are 

presented in Table I. 

2.2 Initializing the harmony memory (HM) 

After setting the Harmony search parameters, the 

harmony memory matrix, shown in (2), is initialized 

by random vector solutions and evaluated using the 

objective function. 

 

Table 1. Harmony search parameters 
Parameter Description 

NImax 

HMS 

HMCR 

PAR 

bw 

xI , xS 

Improvisations Max number. 

Harmony Memory Size 

Harmony Memory considering Rate. 

Pitch Adjusting Rate 

Distance bandwidth 

Lower and higher bounds of decision 

variables 
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Figure.2 Harmony search flowchart 

 

𝐻𝑀 =

[
 
 
 
 
 
 
𝑥1

𝑥2

.

.

.
 

𝑥𝐻𝑀𝑆]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

   

𝑥1 
1      𝑥2    

1 …. 𝑥𝑁  
1               𝑓(𝑥1 )

𝑥1
2     𝑥2

2…      𝑥𝑁
2             𝑓(𝑥2)  

    .       .                                
                                       .   
                               

                
𝑥1
𝐻𝑀𝑆    𝑥2

𝐻𝑀𝑆… 𝑥𝑁
𝐻𝑀𝑆   𝑓(𝑥𝐻𝑀𝑆 )]

 
 
 
 
 
 
 

 

 

 

(2) 

 

where xj is the jth solution vector in the harmony 

memory and xi 
j
 is the ith variable in xj  [4]. 

2.3 Improvisation of a new harmony 

In Jazz improvisation, a musician plays a note, 

he selects it randomly from the total playable range 

(see Figure.3), memory of the musician (see Figure. 

4) or by tweaking the note obtained from its 

memory (see Figure.5). In the same way, the HS 

algorithm improvises a value by choosing it from 

the total values range, from HM or by or tweaking 

the value which was originally chosen from HM. 

2.3.1 Random selection 

The ith  decision variable value of the new 

solution xnew could be chosen randomly where  xi 
I  

≤ xi 
new ≤ xi 

S  with probability 1 − 𝐻𝑀𝐶𝑅 like in (3). 

Random selection is also used for start harmony 

memory initialization. 

 

 

𝑖𝑓   (𝑟𝑎𝑛𝑑 ∈ (0,1) ≥ 𝐻𝑀𝐶𝑅 ) 𝑡ℎ𝑒𝑛 

𝑥𝑖
𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑(𝑥𝑖

𝐼 , 𝑥𝑖
𝑆) (3)

𝑥𝑖
𝐼  and 𝑥𝑖

𝑆  are the lower and higher boundary 

values of decision variables. 

2.3.2 Memory consideration 

Harmony search algorithm could choose the new 

solution xnew  by randomly selecting it from the 

harmony memory with probability (HMCR) using 

(4). 

{
𝑖𝑓   (𝑟𝑎𝑛𝑑 ∈ (0,1) ≤ 𝐻𝑀𝐶𝑅 ) 𝑡ℎ𝑒𝑛

xnew ∈ 𝐻𝑀
 

(4)

2.3.3 Pitch adjustment 

After selecting the new solution xnew from HM 

by Memory Consideration, it could be adjusted or 

not according to its neighbouring values with 

probability (PAR) by adding a random value using 

(5) [3]. 
 

 

𝑖𝑓 (𝑟𝑎𝑛𝑑 ∈ (0,1) ≤ 𝑃𝐴𝑅) 𝑡ℎ𝑒𝑛 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑛𝑒𝑤 + 𝑏𝑤 ∗ 𝑟𝑎𝑛𝑑(−1,1)
 

(5)

where bw is the distance bandwidth. 

 

 

Figure 3. Playable ranges of a musical instrument 

 

Figure 4. Good notes in musician’s memory 

 

 

Figure 5. Tweaking the note from musician’s memory 
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2.3.4 Updating Harmony Memory 

If the new harmony xnew is better than the worst 

vector in HM, the new harmony replaces the worst 

one in the HM [3]. 
 

𝑖𝑓 𝑓(𝑥𝑛𝑒𝑤 ) < f(𝑥𝑤𝑜𝑟𝑠𝑡  ) 𝑡ℎ𝑒𝑛 

𝐻𝑀(𝑤𝑜𝑟𝑠𝑡, : ) = 𝑥𝑛𝑒𝑤
 

(6)

3. Variants of harmonic search 

algorithm 

Good parameter values selection is considered 

one of the challenges, not only for the HS algorithm, 

but also for other meta-heuristics. This challenge has 

led researchers to develop some interesting variants 

for the harmony search by improving the parameters 

settings or by hybridization with other meta-

heuristics. In the next section, four of these variants 

are presented. 

3.1 Improved harmony search algorithm 

(IHS) 

A very well-known harmony search 

improvement is given by Mahdavi and known as 

Improved Harmonic Search [7]. They proposed to 

improve the original algorithm by a dynamic 

adaptation of the adjustment rate values (PAR) and 

bandwidth (bw). PAR value is increased with each 

improvisation t in IHS algorithm using (7): 

 

𝑃𝐴𝑅𝑡 = 𝑃𝐴𝑅𝑚𝑖𝑛 + 𝑡
(𝑃𝐴𝑅𝑚𝑎𝑥 + 𝑃𝐴𝑅𝑚𝑖𝑛)

𝑁𝐼
     (7)

where 𝑃𝐴𝑅𝑡  is the value of PAR in the 𝑡𝑡ℎ   
improvisation, and 𝑃𝐴𝑅𝑚𝑖𝑛 and 𝑃𝐴𝑅𝑚𝑎𝑥  are the 

minimum and the maximum pitch adjusting rate 

(PAR). 

The pitch value bw is dynamically updated for 

each improvisation as follows: 

𝑏𝑤𝑡 = 𝑡𝑏𝑤𝑚𝑎𝑥𝑒
(
ln (

𝑏𝑤𝑚𝑖𝑛
𝑏𝑤𝑚𝑎𝑥

)

𝑁𝐼
) (8)

bwmin and bwmax   are the minimum and the 

maximum pitch values. 

3.2 Global-best harmony search (GHS) 

Another major improvement made by Omran 

and Mahdavi [8] called Global best harmony search 

(GHS). It is inspired from the PSO optimization; it 

modifies the pitch-adjustment step of the HS where 

the new Harmony is chosen as the best harmony in 

the HM, so the bw parameter is eliminated, as 

illustrated in (9). 
𝑖𝑓(𝑟𝑎𝑛𝑑 ∈ (0,1) ≤ 𝑃𝐴𝑅) 𝑡ℎ𝑒𝑛 

𝑥𝑘
𝑛𝑒𝑤 = 𝑥𝑘

𝑏𝑒𝑠𝑡/ 𝑘 ∈ 𝑟𝑎𝑛𝑑(1,𝑁) (9)

3.3 Self-adaptive harmony search (SAHS) 

Wang and Huang [9] proposed the Self-adaptive 

Harmony Search, (SAHS), with automatically 

adjusted parameters. Indeed, the pitch-adjustment 

step is modified so the new harmony is updated with 

either (10) or (11) with equal probability: 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑛𝑒𝑤 + [max(𝐻𝑀𝑖) − 𝑥𝑖
𝑛𝑒𝑤] 𝑟𝑎𝑛𝑑(0,1) 

(10)

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑛𝑒𝑤 + [𝑥𝑖 −min(𝐻𝑀𝑡)]𝑟𝑎𝑛𝑑[0,1] (11)

where rand(0, 1) is a randomly generated value 

between 0 and 1, xi 
newis the ith variable of the new 

harmony, min(HMt) and max(HMt) are the 

minimum and the maximum values of the HM in the 

tth improvisation. 

3.4 Adaptive harmony search 

Hasancebi [10] proposed a new adaptive 

algorithm where HMCR and PAR parameters are 

assigned dynamically during improvisation process 

by probabilistically selecting them around average 

values of these parameters observed within the 

current harmony memory matrix using (12) and (13). 

𝐻𝑀𝐶𝑅𝑡 = (1 +
1 − 𝐻𝑀𝐶𝑅0
𝐻𝑀𝐶𝑅0

. 𝑒−𝛾.𝑁(0,1))
−1

 (12)

𝑃𝐴𝑅𝑡 = (1 +
1 − 𝑃𝐴𝑅0
𝑃𝐴𝑅0

. 𝑒−𝛾.𝑁(0,1))
−1

 (13)

𝐻𝑀𝐶𝑅𝑡  and 𝑃𝐴𝑅𝑡  represent the sampled values of 

the control parameters for the new harmony vector. 

N(0,1) is the normally distributed random number 

having expectation 0 and standard deviation 1. The 

symbols 𝐻𝑀𝐶𝑅0 and 𝑃𝐴𝑅0 denote the average 

values of control parameters within the harmony 

memory matrix, obtained by averaging the 

corresponding values of all the solution vectors 

within the HM matrix, that is: 

 

{
 

 𝐻𝑀𝐶𝑅0 =
∑ 𝐻𝑀𝐶𝑅𝑖
𝐻𝑀𝑆
𝑖=1

𝐻𝑀𝑆

𝑃𝐴𝑅0 =
∑ 𝑃𝐴𝑅𝑖
𝐻𝑀𝑆
𝑖=1

𝐻𝑀𝑆

 
(14)
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The factor  𝛾   refers to the learning rate of 

control parameters, which is recommended to be 

selected within a range of [0.25 0.50]. 

 

4. Statistical analysis of the harmony 

search algorithm and its variants 

4.1 Experimental settings 

To evaluate the performances of Harmony 

search algorithm and its variants, statistical tests will 

be achieved in order to compare them. Indeed, 

Harmony search (HS), improved harmony search 

algorithm (IHS), Global-best harmony search (GHS), 

Adaptive Harmony Search (AHS) and Self-adaptive 

Harmony Search (SAHS) are used to find the 

minimum of 10 benchmark functions listed as 

follows [11]: 

 F1: Sphere function. 

𝑓(𝑥1. . 𝑥𝐷) =
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1

 

 F2: Ackley function 

𝑓(𝑥1. . 𝑥𝐷) = −20 exp

(

 −0.2√
1

𝐷
∑𝑥𝑖

𝐷

𝑖=1

− exp (
1

𝐷
∑cos (2𝜋𝑥𝑖)

𝐷

𝑖=1

)

)

 + 20 + 𝑒 

 F3: Ridge function 

𝑓(𝑥1. . 𝑥𝐷) =∑(∑𝑥𝑗

𝑖

𝑗−1

)2
𝐷

𝑖=1

 

 F4: Rosenbrock function 

𝑓(𝑥1. . 𝑥𝐷) =
1

𝐷
∑(100(𝑥𝑖

2 − 𝑥𝑖−1)
2

𝐷−1

𝑖=1

− (1 − 𝑥𝑖)
2) 

 F5: Schwefel function 

𝑓(𝑥1. . 𝑥𝐷) =∑(−𝑥𝑖

𝐷

𝑖=1

− sin(√|𝑥𝑖|)) + 𝛼. 𝐷 

 F6: Rastrigin function 

𝑓(𝑥1. . 𝑥𝐷) = 10𝐷 +∑(𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖))

𝐷

𝑖=1

 

 F7: Trid functions 

𝑓(𝑥1. . 𝑥𝐷) =∑(𝑥𝑖 − 1)
2

𝐷

𝑖=1

−∑𝑥𝑖𝑥𝑖−1

𝐷

𝑖=1

 

 F8: Sum squared function 

𝑓(𝑥1. . 𝑥𝐷) =∑𝑖𝑥𝑖
2

𝐷

𝑖=1

 

 F9: Power Sum function 

𝑓(𝑥1. . 𝑥𝐷) =∑[(∑𝑥𝑗
𝑖

𝐷

𝑗−1

)− 𝑏𝑖]

2
𝐷

𝑖=1

 

 F10: Griewank function 

𝑓(𝑥1. . 𝑥𝐷) = 1 +
1

4000
∑𝑥𝑖

2

𝐷

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖−1

 

To carry out the comparison, each algorithm is 

run 30 independent runs to minimize each problem 

with dimension D = 10. The termination criterion is 

either when the maximum evaluations number: 100D 

is reached or the error value is smaller than 10-4. 

The parameters of the compared algorithms are 

in Table.2 and average errors (for the minimum 

values obtained from the 30 runs) are in Table.3. 

Statistical tests are usually used to draw 

inferences about one or more populations from 

given samples. Before carrying out a test, two 

hypotheses are defined, the null hypothesis which 

states the no difference between the compared 

populations whereas the alternative hypothesis 

represents the presence of difference [12]. When 

applied, a hypothesis testing requires a level 

significance α to determine at which level the 

hypothesis may be rejected. In our case we carried 

out two nonparametric tests due to the violation of 

data normality pre-condition in Table.3 [12]. 
 

Table 2. HS variants’  parameters 
Parameter HS GHS IHS AHS SAHS 

NImax 
HMS 

HMCR 

PAR 

bw 

γ 

PARmax 

PARmin 

bwmax 

bwmin 

20 

3 

0.995 

0.01 

0.01 

/ 

/ 

/ 

/ 

/ 

20 

3 

0.995 

0.01 

/ 

/ 

/ 

/ 

/ 

/ 

20 

3 

0.995 

/ 

/ 

/ 

0.1 

0.001 

0.005 

0.001 

20 

3 

/ 

/ 

/ 

0.3 

/ 

/ 

/ 

/ 

20 

3 

0.995 

0.01 

/ 

/ 

/ 

/ 

/ 

/ 

 

Table 3. Average errors obtained for the 10 benchmark 

functions. 
Num 

AHS  GHS  HS SAHS  IHS 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

F10 

0.0000 

0.0001 

0.0201 

0.020 

0.000 

41.900 

5.544 

21.100 

8.180 

0.000 

0.000 

0.000 

0.066 

0.000 

0.000 

0.000 

4.971 

15.119 

7.220 

0.000 

0.000 

410.00 

1400.00 

3.3297 

47716.00 

47.228 

41.650 

21.190 

74.306 

0.1047 

0.000 

0.000 

3100.00 

0.000 

0.000 

43.000  

43.200 

21.100 

43.600 

0.024 

0.000 

211.000 

3620.00 

1.690 

0.002 

37.000 

23.000 

21.100 

45.200 

0.850 

 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page295.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2537.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2530.htm
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4.2 Wilcoxon signed ranks tests 

The Wilcoxon signed ranks test is a 

nonparametric test that compares two paired groups 

(algorithms) in aim to detect significant differences 

between their behaviors. 

It is considered as the nonparametric equivalent 

of the parametric t-test. The test essentially 

computes the difference between each set of pairs 

and analyses these differences. The Wilcoxon Rank 

Sum test can be used to accept (or reject) the null 

hypothesis that two samples represent two different 

populations [12].  

The Wilcoxon test is carried out in pairwise 

comparison of the HS variants considered in the 

analysis. Table.4 shows the R+, R- and p-values 

computed for all pairs (the p-values have been 

obtained by using SPSS)[12].  As the table states:  

 GHS shows a significant improvement 

over all the others algorithms with a 

level of significance α = 0:05. 

 AHS is clearly better than HS with α = 

0.1 and from HIS with α = 0:05. 

 We can remark also that the hypothesis 

IHS is better than HS and SAHS are 
strongly rejected with level 0.139 and 

0.0327 respectively. 

4.3 Friedman test 

The Friedman Test [16] is the non-parametric 

alternative to the one-way ANOVA with repeated 

measures. It is used to test for differences between 

groups in multiple comparisons with a control 

method. The null hypothesis for Friedman’s test 

states the equality of medians between the 

populations. 

We applied the Friedman test to compare GHS 

(control method) with the other four algorithms (HS, 

IHS, SAHS, AHS) with α = 0:05. The results of the 

test are represented in Table 5. Friedman statistic 

(distributed according to chi-square with 4 degrees 

of freedom is 79.64795. while the p-value computed 

by Friedman Test is 17E-5. The null hypothesis 

(Equality of medians) is rejected by the Friedman 

test (p-value < α), so we could conclude that there is 

a difference between the compared algorithms. As 

the null hypothesis is rejected, we can proceed with 

post-hoc tests to control the family-wise error in 

multiple hypotheses testing, such as Hommel, Li 

and Hochberg post-hoc procedure. The p-values of 

these three post-hoc procedures are shown in 

Table.6 [12]. 

 

Table 4.  Wilcoxon signed ranks test results. 

Pair R- R+ p-value 

GHS  - AHS  

GHS -  HS  

GHS  - SAHS  

GHS  - IHS  

AHS  - SAHS  

AHS - HS 

AHS  - IHS  

SAHS  - HS  

IHS  - SAHS  

IHS  -HS 

28 

45 

21 

45 

25 

45 

32 

34 

11 

35 

0 

0 

0 

0 

3 

0 

4 

11 

25 

10 

0.018 

0.008 

0.028 

0.008 

0.063 

0.008 

0.050 

0.173 

0.327 

0.139 

Table 5. Average rankings by Friedman test 

Algorithm Ranking 

HS  1.6 

SAHS 3.099 

IHS 2.400 

AHS 3.75 

GHS 4.15 

Statistic 79.64795 

pvalue 17E-5 

 
Table 6. Post-hoc procedures results, Friedman test 

Algorithm AHS  SAHS IHS HS 

unadjusted p 3.106E-4 0.0023 0.0338 0.2578 

Holm 0.0012 0.0070 0.0677 0.2578 

Li 4.184E-4 0.0031 0.0436 0.2578 

Hochberg 0.0012 0.0070 0.0677 0.2578 

4.4 Discussion 

The statistical analysis has highlighted the GHS 

algorithm as the best one [16]. Indeed, Wilcoxon 

test has accepted all null hypotheses where GHS is 

better than each of the four compared algorithms. 

Friedman test has confirmed these results by 

ranking GHS as the first one and when used as 

control method in the post-hoc procedures (Hommel, 

Li and Hockberg), all the null hypothesis were 

accepted. These performances are due to the 

hybridization with PSO which has led to improve 

the diversification of the algorithm. 

The major drawback of the IHS is that the user 

needs to specify the minimum and maximum values 

for bw and PAR which are difficult to guess and 

problem dependent and it surely affects the 

performances of IHS in our case. 

5. PID controller tuning using harmony 

search algorithms 
PID control is a sum of three components, 

Proportional, Integral and Derivative part. It is used 

to cancel the error in (15) between the plant output 

y(t) and the desired output yd(t) [17]: 
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𝑒(𝑡) = 𝑦(𝑡) − 𝑦𝑑(𝑡) 

 

(15) 

 The control signal of the PID controller is given 
by (15): 

( ) ( ) ( ) ( )p d iu t K e t K e t K e t dt     
(16) 

where Kp, Kd, Ki are constant positive gains to be 

determined.  

Before using a PID controller we have to adjust 

its parameters. In case of nonlinear systems, tuning 

the gains is done usually by trial/error [15]. 

Adjusting the PID parameters could be considered 

as an optimization problem where ones try to find 

the optimal solution inside a predefined search space 

to fulfill a desired output of the nonlinear system 

[13]. 

The harmony search algorithm and its variants 

are used find the optimal combination of the PID 

controller parameters where each harmony is 

composed of the three gains (Figure 6). 

Objective function in (17) is used to evaluate the 

harmonies of harmony search and its variants: 

      max, , 1  p i d s r mK K K e O e e t tf         (17) 

Where tm and tr are the settling time and rising 

time respectively.  Omax is the maximum authorized 

overshoot and es is the steady state error while β is a 

weighting factor to promote either the times (tm and 

tr) or errors (es and Omax),  

 

6. Simulation results 
Harmony search algorithm and its variants GHS 

(the best one from the statistical analysis) and IHS 

are compared to genetic algorithm (GA) and used in 

a real world application to find the optimal values of 

PID controller gains to control an inverted 

pendulum (See Figure.7). 

The aim is to stabilize the pole angle θ (θd = 0). 

The initial parameters for the HS variants are in 

Table. 7 and those of GA are in Table. 8. 
 

 

 

 

 

 

 

Figure 6. Tuning of PID controller using HS algorithms 

 

Figure 7. Inverted pendulum system 

 

Table 7. Parameters settings for HS, GHS and IHS 

Parameter HS GHS IHS 

NImax 
HMS 

HMCR 

PAR 

bw 

xI , xS 

20 

3 

0.995 

0.01 

0.01 

[0 50] 

20 

3 

/ 

/ 

/ 

[0 50] 

20 

/ 

/ 

/ 

/ 

[0 50] 

 

Table 8. Parameters settings for GA 

 

Parameter Value 

Chromosomes  

Evaluations number  

Genes  

Crossover rate  

Crossover type 
Mutation rate  

20 

104 

3 

0.6 

Two points 

0.01 
 

 

The good results in term of fitness have led to 
obtain the optimal gains of the PID controller. These 
values have been used to control the inverted 
pendulum. The angle errors of the pole are 
represented in Figure. 8. 

The gains obtained from GHS have canceled the 
overshoot and reduced the settling time. Those of 
HS have caused an overshoot of 15%. 

The performances obtained from GHS are the 
result of the good optimization process and come to 
confirm the statistical analysis. 

 

Figure 8. Objective function values for the harmony search 
variants and GA 
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Figure 9. Angle errors for inverted pendulum (HS, GHS, IHS 
and GA) 

For comparison purpose, we run each algorithm 

10 times. For each run, the same start harmonies 

was used in the same conditions (improvisations 

number and harmony size) for GA, HS, GHS and 

IHS. We measured the minimum costs (Objective 

function for HS variants and fitness for GA). 

Comparison results are in Table.9. 

From Table.9, GHS gives good results even 

with different runs and different start harmonies, this 

is due to the hybridization with PSO witch avoid 

local optima and improve the HS. These results are 

detailed in Table.10 where it is clear that GHS 

optimal gains enhance the system performances 

(Rising time Tr, Settling time Ts and maximum 

overshoot Omax) where GHS gets better results then 

GA in all the runs for rising time, in 9 runs for 

settling time and in 7 runs for overshoot (See 

Table.10). 
 

7. Conclusion  
We presented in this paper an overview of the 

harmony search algorithm and its main variants. 
These algorithms were evaluated using two 

nonparametric tests with 10 benchmark problems of 
function optimization: Wilcoxon test and Friedman 
test with its post-hoc procedures. The results of the 
statistical analysis highlights the GHS algorithm as 
the first ranked against the rest of the considered 
harmony search variants. 

A real world application of the GHS and HS to 

tune PID controller gains for an inverted pendulum 

was also presented giving good results for GHS 

algorithm when compared to genetic algorithms 

confirming the results of the statistical analysis. 
This work could be improved by considering 

other statistical nonparametric tests like Quade test 
or/ and hybridize the harmony search with other 
evolutionary algorithm to enhance its diversification 
process. The harmony search and its variants could 
also be applied to optimize more complex systems 
in dimension and ranges. 

 

Table 9. Minimum costs for GHS,IHS, HS and GA 

in 10 runs. 

Run Min HS Min GHS Min IHS Min GA 
1  71.5 63.72 69.41 65.98 

2  58.97 56.03 60.31 56.74 

3  56.44 52.88 58.25 55.08 

4  53.83 53.76 58.22 55.11 

5  57.15 55.11 59.57 60.64 

6  61.56 58.08 62.41 61.78 

7  53.97 51.79 57.98 56.35 

8  59.21 55.64 62.54 64.88 

9  55.00 49.23 56.20 52.37 

10  68.31 62.65 67.74 66.93 

 

 

Table 10. Performance of PID controller tuned by (GHS, GA). 
 

 

Run 

GHS GA 

Obj func  Tr(s) Ts(s) Omax Min fitn Tr(s) Ts(s) Omax 

1  63.72 0.051 0.160 0.012 65.98 0.056 0.465 0.014 

2  56.03   0.064 0.175 0.012 56.74 0.058 0.158 0.014 

3  52.88   0.054 0.194 0.014 55.08 0.059 0.783 0.018 

4  53.76 0.053 0.172 0.011 55.11 0.056 0.175 0.020 

5  55.11  0.064 0.178 0.012 60.64 0.055 0.730 0.020 

6  58.08  0.065 0.208 0.015 61.78 0.077 0.301 0.008 

7  51.79  0.064 0.180 0.012 56.35 0.068 0.117 0.014 

8  55.64  0.064 0.191 0.014 54.88 0.061 0.167 0.013 

9  49.23  0.056 0.197 0.010 52.37 0.058 0.360 0.011 

10  62.65 0.065 0.158 0.012 66.93 0.068 0.164 0.013 
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