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Abstract: This paper proposes a connection weighting scheme of a complex-valued Hopfield neural network for
associative memory constrained by given attractive domain. Both equilibrium conditions and stability analysis results
are used in the synthesis procedure. We solve the equilibrium equation by singular value decomposition technique
and obtain a general solution of the connection weight matrix with a free sub-matrix. Such general solution and the
parameter matrix corresponding to the given attractive domain are contained in the inequations which are derived
from stability analysis and can be represented as linear matrix inequations (LMIs). The connection weighting solution
of such LMIs can guarantee stability and attractability of the network simultaneously. A simulation example of a
3-dimension complex-valued Hopfield neural network shows the proposed synthesis method. The simulation results
demonstrate the attractive ability of two complex-valued vectors in the prespecified attractive domain.
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1. Introduction

In resent years, the research and application of complex-
valued neural networks, because of their ability in deal-
ing with complex-valued data directly, have got growth
[1]. In this paper we discuss a class of complex-valued
associative memory as the application of complex-valued
Hopfield neural network (CHNN).

It is known that in a well designed Hopfield asso-
ciative memory, each desired memory pattern should
be stable and attractive, i.e. an asymptotically stable
equilibrium point of the system, and the correspond-
ing attractive domain should be as large as possible.
However, among the three conventional learning rules
for the complex-valued Hopfield network: Hebb rule
[2], projection rule [3] and gradient descent learning

rule [4], neither stability nor attractability is consi-
dered.

To guarantee the stability of real-valued Hopfield
neural network (RHNN), A.N.Michel synthesized a
discrete time network by equilibrium equation, where
an adjustable gain of the activation function was uti-
lized to satisfy the asymptotically stable condition de-
rived from Lyapunov method [5]. In reference [6], a
class of generalized continuous time network was de-
signed by solving equilibrium equation with singular
value decomposition technique, and the stability prop-
erties of the given equilibrium points were analyzed in
terms of the eigenvalues of Jacobian matrix of energy
function. Y.Kuroe et al. proposed complex-valued
energy function and extended the synthesis method of
reference [6] to complex-valued domain [7].
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In the above synthesis approaches (whether for RHNN
or for CHNN) the attractiveness is not a design con-
dition. At the same time, attractive ability is essen-
tial for associative memory. And in some practical
applications, there are special requirements of the at-
tractive domains, such as the size or the shape of the
domain. Considering the size of attractive domain,
Muezzinoglu et al.designed real-valued and complex-
valued Hopfield associative memory in the related work
[8,9]. Their methods were to construct energy land-
scape and solve homogenous linear inequalities, which
comes from the definition that energy function of each
equilibrium point is the strict local minimum.

In present research of associative memories, the sta-
bility analysis based on Lyapunov theory has been
widely used to evaluate and enlarge the attractive do-
mains [10]. To store the desired complex-valued pat-
tern vectors and recall their neighbor vectors in the
prespecified attractive domain, this paper utilizes the
Lyapunov synthesis method for complex-valued Hop-
field associative memory. At first we solve the equi-
librium equations of the network by singular value de-
composition and obtain a normal solution of connec-
tion weight matrix in which there is a free submatrix
undetermined. Then, by Lyapunov theory, the asymp-
totically stability conditions are obtained which con-
tain parameter matrix of the given attractive domain
and can be expressed as LMIs. Finally, substituting
the normal weight solution into the LMIs, we get a
feasible solution of the undetermined submatrix, and
thus accomplish the synthesis of the desired CVNN.

In the following, the imaginary unit is denoted by
i(i2 =−1). For complex-valued matrix (vector or num-
ber) A ∈ Cn×m(a ∈ Cn,a ∈ C), its real and imaginary
parts are denoted byAR(aR,aR) and AI(aI,aI)respectively.
AT denotes the transpose of A and A∗ denotes the
conjugate transpose of A. The notion X≥ Y(X >
Y), where X and Y are symmetric matrix, means that
X−Y is positive semidefinite (positive definite). *
refers to the element below the main diagonal of a
symmetric block matrix.

2. Model of CHNN

2.1 Description of the model
Consider a class of complex-valued Hopfield neural

network (CHNN). The CHNN has n neurons and the
dynamics of the ith neuron is described by following

algorithm:




dui(t)
dt =−ciui(t)+

n
∑
j=1

ai jVj(t)+ Ii

Vi(t) = fi(ui(t))
(1)

where ui(t) ∈C,Vi(t) ∈C and Ii ∈C are the state, the
output and the threshold value of the ith neuron at time
t ,respectively,ai j ∈ C is the connection weight from
the jth neuron to the ith neuron, Ci > 0 is time constant
of the ith neuron, fi(·) is the activation function which
is a nonlinear complex-valued function ( fi : C→ C).

Note that the neural network described by (1) is a di-
rect complex-valued extension of the real-valued neu-
ral network of Hopfield type. In the real-valued neural
network for associative memory, the activation func-
tion is usually chosen to be a smooth and bounded an-
alytic function such as sigmoid function. In the com-
plex region, however, such a condition is not suitable
for complex activation function in that according to
Liouville’s theorem,if f (u) is analytic at all u ∈C and
is bounded, then f (u) is a constant function[11]. For
this reason, we choose a class of complex-valued ac-
tivation function described in [11]:

fi(ui) = f R
i (uR

i )+ i f I
i (u

I
i ) (2)

where f R
i ( f I

i ) is bounded, monotone nondecreasing,
continuously differentiable with respect to uR

i (uI
i ) , that

is, ∂ f R
i /∂uR

i > 0,∂ f I
i /∂uI

i > 0.
Y.Kuroe et al. obtained in [11] that with such complex-

valued activation function and Hermitian connection
weight matrix, the continuous model of CHNN (1) has
an energy function.

We relax the continuously differentiable to locally
Lipschitz conditions with Lipschitz constants Gi and
Hi, that is, there exist two constant matrices: G =
diag(G1,G2, . . . ,Gn),H = diag(H1,H2, . . . ,Hn), wh-
ere 0≤ G,H < +∞, such that

0≤ f R
i (xi)− f R

i (yi)
xi− yi

≤ Gi,0≤ f I
i (xi)− f I

i (yi)
xi− yi

≤ H i (3)

for all xi,yi ∈Bδ (xe)(xi 6= yi, i = 1,2, . . . ,n) where Bδ (xe)
= {x = [x1,x2, . . . ,xn]T ∈ Rn : ‖x− xe‖< δ}.

2.2 Translation of the equilibrium
Without loss of generality, we suppose the CHNN

(1) has equilibrium ue = [ue
1,u

e
2, . . . ,u

e
n]

T ∈Cn not lo-
cating at the origin (ui = 0 + i0, i = 1,2, . . . ,n) . By
definition, ue satisfies the equation

0 =−ciue
i +

n

∑
i=1

ai j f j(ue
j)+ Ii (i = 1,2, . . . ,n) (4)
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To discuss the stability and the attraction of network
(1), we need shift the equilibrium point to the origin
by using the transformation yi(t) = ui(t)− ue

i . Then
network (1) can be transformed into the form

dyi(t)
dt

=−ciyi(t)+
n

∑
j=1

ai jg j(y j(t)) (5)

where g j(y j(t)) = f j(y j(t)+ue
j)− f j(ue

j)
From (2) we can rewrite g j(y j) explicitly as

g j(y j) = gR
j (y

R
j )+ igI

j(y
I
j)

= [ f R
j (yR

j +(ue
j)

R)− f R
j (ue

j)
R]+

i[ f I
j (y

I
j +(ue

j)
I)− f I

j ((u
e
j)

I)]

In the following discussion we denote y j(t) as y j and
g j(y j) as g j for simplifying description. Thus

dyi

dt
=

dyR
i

dt
+ i

dyI
i

dt

= [−ciyR
i +

n

∑
j=1

(aR
i jg

R
j −aI

i jg
I
j)]+ (6)

i[−ciyI
i +

n

∑
j=1

(aI
i jg

R
j +aR

i jg
I
j)]

The corresponding matrix vector form is

dy
dt

=
dyR

dt
+ i

dyI

dt
= (−CyR +ARgR−AIgI)+ (7)

i(−CyI +AIgR +ARgI)

where y = [y1, . . . ,yn]T = yR +iyI,C = diag(c1, . . . ,cn),
A = (ai j)n×n = AR + iAI,gR = [gR

1 , . . . ,gR
n ]T and gI =

[gI
1, . . . ,g

I
n]

T

By local Lipschitz condition in (3), it is easy to ob-
tain the following inequalities:

(gR)TSgR ≤ (yR)TGSGyR (8)

(gI)TTgI ≤ (yI)THTHyI (9)

where S,T ∈ Rn×n can be any nonnegative diagonal
matrices.

2.3 Stability analysis of CHNN
For the purpose of associative memory, each mem-

ory vector that we desire for the CHNN (1) to store
must be stable and attractive, i.e., local asymptotic sta-
ble equilibrium of the network. Therefore it is neces-
sary to analyze the stability condition of the network.

Theorem 1 For given real-valued P > 0,Q > 0 con-
sider the set

M(P,Q) : = {u ∈Cn : (uR)TPuR ≤ 1,

(uI)TQuI ≤ 1} (10)

if there exist network (7) and diagonal matrices and
of compatibly dimensions such that

−2PC+PARS−1(AR)TP+PAIT−1(AI)TP

+2GSG < 0
(11)

and

−2QC+QAIS−1(AI)TQ+QART−1(AR)TQ
+2HTH < 0

(12)

namely the matrix inequalities


−2PC+2GSG PAR PAI

∗ −S 0
∗ ∗ −T


 < 0 (13)



−2QC+2HTH QAI QAR

∗ −S 0
∗ ∗ −T


 < 0 (14)

then the origin of network (7) is locally asymptotically
stable, the set M(P,Q) is an attractive domain. And
the trivial solution u ≡ ue of network (1) is locally
asymptotically stable, the set

M′(P,Q) := {u ∈Cn : (uR− (ue)R)TP(uR− (ue)R)≤ 1,

(uI− (ue)I)TQ(uI− (ue)I)≤ 1}
is a domain of attraction of equilibrium point ue for
network (1)

Proof Given P > 0 and Q > 0, consider a quadratic
Lyapunov function with complex-valued variables

v(y(t)) = (yR(t))T PyR(t)+(yI(t))T QyI(t) (15)

where y(t) = yR(t)+ iyI(t),y(t) ∈M(P,Q).
Firstly, it is easy to guarantee that v(y(t)) is bounded.

The derivative of v(y(t)) along the trajectories of sys-
tem(7) is given by

v̇(y) = 2(yR)T PẏR +2(yI)T QẏI

= 2(yR)T P(−CyR +ARgR−AIgI)+
2(yI)T Q(−CyI +AIgR +ARgI)

= −(yR)T PCyR +(yR)T PARgR−
(yR)T PAIgI −2(yI)T QCyI+
2(yI)T QAIgR +2(yI)T QARgI

By applying inequalities

ΣΣΣT
1 ΣΣΣ2 +ΣΣΣT

2 ΣΣΣ1 ≤ ΣΣΣT
1 ΣΣΣ3ΣΣΣ1 +ΣΣΣT

2 ΣΣΣ−1
3 ΣΣΣ2 (16)
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and inequalities (8) , (9) , it will lead to

2(yR)T PARgR

= (yR)T PARgR +(gR)T (AR)T PyR

≤ (yR)T PARS−1(AR)T PyR +(gR)T SgR

≤ (yR)T PARS−1(AR)T PyR +(yR)T GSGyR.

(17)

−2(yR)T PAIgI ≤ (yR)T PAIT−1(AI)T PyR

+(yI)T HTHyI (18)

2(yI)T QAIgR ≤ (yI)T QAIS−1(AI)T QyI

+(yR)T GSGyR (19)

2(yI)T QARgI ≤ (yI)T QART−1(AR)T QyR

+(yI)T HTHyI (20)

With (16) – (20), we can obtain

v̇(y)≤ (yR)T ΓΓΓ1yR +(yI)T ΓΓΓ2yI (21)

where
ΓΓΓ1 =−2PC+PARS−1(AR)T P+PAIT−1(AI)T P+2GSG
ΓΓΓ2 =−2QC+QAIS−1(AI)T Q+QART−1(AR)T Q+2HTH

By condition (11) and (12) in Theorem 1, it is easy
to see

Γ1 < 0,Γ2 < 0 (22)

Using Schur Complement, we can rewrite (22) as
linear matrix inequalities in form of (13) and (14), re-
spectively. Then with inequalities (21) and (22), we
get

v̇(y) < 0 (23)

Thus the origin of CHNN (7) is locally asymptot-
ically stable and the set M(P,Q) is an attractive do-
main.

For the network in (1), by coordinate transforma-
tion, the setM′(P,Q) is a domain of attraction of equi-
librium point ue for the network in (1). The proof is
complete.

3. Parameter designation of CHNN

3.1 Description of designation problem
To store a given complex-valued pattern vector set

in CHNN (1) and guarantee each pattern can attract
the vectors in a prespecified neighbor domain, in this
paper we design the connection weight matrix A and
the threshold matrix I, while the time constant matrix
C is predefined to control the evolution speed of the
system.

As mentioned above, to store patterns in a Hopfield
neural network, the patterns must be the equilibrium
points of the network. Furthermore, to let the network
recall the patterns from the corrupted or incomplete
patterns corresponding to them, the equilibrium points
must be attractive, that is, locally asymptotically sta-
ble.

Thus in the following synthesis procedure both the
equilibrium constrains and stable conditions are ap-
plied

3.2 Equilibrium constrains
Suppose a set of complex-valued pattern vectors is

ΛΛΛ = {V1, . . . ,Vr, . . . ,Vm+1}, where Vr = [V r
1 , . . . ,V r

n ]∈
Cn,r = 1, . . . ,m+1

In order to store the m + 1 vectors, each vector Vr

should be an equilibrium point of the CHNN (1), which
means the vector must satisfy equilibrium equation
(4). So we get

0 =−ciur
i +

n

∑
i=1

ai jV r
j + Ii (24)

V r
i = fi(ur

i ) = f R
i ((ur

i )
R)+ i f I

i ((u
r
i )

I) (25)

for i = 1, . . . ,n, r = 1, . . . ,m+1, where Vr and ur =
[ur

1, . . . ,u
r
n]

T are the corresponding rth output and in-
put pattern vectors, respectively.

Suppose f R
i and f I

i are all invertible, a sample cal-
culation

ur
i = (ur

i )
R + i(ur

i )
I = f R−1

i ((V r
i )R)+ i f I−1

i ((V r
i )I) (26)

will yield ur for any Vr .
In terms of ur and Vr, the equilibrium constrains

(24) can be represented in a matrix form:




0 = −Cu1 +AV1 + I
...
0 = −Cum+1 +AVm+1 + I

(27)

By defining

u = [u2−u1... · · · ...um+1−u1], (28)

V = [V2−V1... · · · ...Vm+1−V1], (29)

Equation(27) are transformed to

Cu = AV, (30)

I = Cum+1−AVm+1. (31)
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According to conventional projection rule, the solu-
tion of weight matrix A is calculated from (30), that
is

A = CuV+, (32)

where V+ is the Pseudoinverse of V. It is obvious that
the weight matrix A is not Hermitian, thus the sta-
bility of the pattern vectors Vr is undetermined from
analysis in [11].

In fact, the solution of (30) is generally not unique.
To obtain a Hermitian matrix A, that is A = A∗ , we
employ singular value decomposition technique and
derive a normal solution of (30) as follows.

Suppose the singular value decomposition of V is

V = LΣΣΣM∗, (33)

where L is a n×n complex-valued unitary matrix, M
is a m×m complex-valued unitary matrix, and ΣΣΣ is a
n×m real-valued diagonal matrix with singular values
of V and zero as its diagonal elements. Generally the
number of neurons (n) is greatly larger than the num-
ber of memory patterns (m + 1), and the patterns are
not linear dependent. Thus, it is reasonable to suppose
the rank of matrix ΣΣΣ is m and denote ΣΣΣ by

ΣΣΣ =
[

ΣΣΣ1
000

]
. (34)

where Σ1 = diag(σ1, . . . ,σm),σ1 ≥ σ2 ≥ ·· · ≥ σm > 0
are the singular values of V

Substituting (33) into (30), we get A = (L ΣΣΣ M∗) =
Cu and

L∗ALΣΣΣ = L∗CuM 4
=

[
C1
C2

]
. (35)

where C1 is a complex-valued matrix and C2 is a (n−
m)×m complex-valued matrix. Also, let us define a
real-valued square matrix with dimension n×n

R =
[

ΣΣΣ1 0
0 E

]
, (36)

where E denotes a (n−m)× (n−m) identity matrix.
It is obvious that R is n× n a real-valued symmetric
matrix, i.e.R∗ = R . Next, we solve

Next, we solve

R∗L∗ALR = RL∗AL
[

ΣΣΣ1 0
0 E

]

= R
[

C1 ΦΦΦ
C2 ΨΨΨ

]

=
[

ΣΣΣ1C1 ΣΣΣ1ΦΦΦ
C2 ΨΨΨ

]
(37)

where ΦΦΦ is a n× (n−m) parameter matrix and ΨΨΨ is a
(n−m)× (n−m) parameter matrix. Since A is Her-
mitian, to ensure a solution of (37), it is needed that

ΣΣΣ1C1 = C∗
1ΣΣΣ∗1 = C∗

1ΣΣΣ1, (38)

and ΦΦΦ = ΣΣΣ−1
1 C∗

2,ΨΨΨ = ΨΨΨ∗

Remark 1. Constraint (38) is a necessary condi-
tion for equilibrium equations (30) to have a solution.
It is easy to prove that ΣΣΣ1C1 = C∗

1ΣΣΣ1 condition (38) is
equivalent to

V∗u = u∗V, (39)

(See also in reference [6]). So we suppose the de-
sired memory pattern vector set ΛΛΛ satisfy condition
(39) in the following designation scheme for CHNN.

If condition (39) is satisfied, then (30) has a solution

A = LDL∗ (40)

where

D =
[

C1ΣΣΣ−1
1 ΦΦΦ

C1ΣΣΣ−1
1 ΨΨΨ

]
. (41)

Remark 2. Solution (40) is a normal solution
of equilibrium (30) from the standpoint that we can
choose the conjugate symmetric matrix ΨΨΨ randomly
while the weight matrix A from (40) can satisfy the
equilibrium constraint (30). On the other hand, if we
loose symmetric constrain for weight matrix A and let
ΦΦΦ = 0 and ΨΨΨ = 0, it can be proved that the solution
(40) is the Pseudoinverse solution (32) in the conven-
tional projection rule. Thus we can conclude that (32)
is a special case of (40)

Next, we set ΨΨΨ = αE to simplify the following des-
ignation, where E is an identity matrix and α is a pa-
rameter to be determined. By denoting L = [L1 L2],
where, L1 ∈Cn×m,L2 ∈Cn×(n−m), and D1 = C1ΣΣΣ−1

1 ,
D2 = C2ΣΣΣ−1

1 = ΦΦΦ∗, formula (40) can be rewrote as

A = [L1 L2]
[

D1 D∗
2

D2 αE

][
L∗1
L∗2

]
= AR + iAI (42)

where

AR = (L1D1L∗1 +L2D2L∗1 +L1D∗
2L∗2)

R

+α(L2L∗2)
R

4
= XAR1 +αXAR2

(43)

AI = (L1D1L∗1 +L2D2L∗1 +L1D∗
2L∗2)

I

+α(L2L∗2)
I

4
= XAI1 +αXAI2

(44)
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3.3 Synthesis under attractive domain constrains
From Theorem 1, it is known that if we find diag-

onal matrix S ≤ 0,T ≤ 0, and suitable parameter ma-
trix A to satisfy inequalities (13) and (14), then the
equilibrium points of CHNN (1) can attract the cor-
rupted patterns in the predetermined neighbor domain
M(P,Q).

Hence, to synthesis the CHNN(1) means to solve the
matrix inequalities (13) and (14) . By substitute equi-
librium solutions (43) and (44) to inequalities (13) and
(14), we get and

Both inequalities (45) and (46) have a form of lin-
ear matrix inequalities (LMI), thus the solution proce-
dure will be very easy. With the weight matrix A, the
threshold value vector I can be obtained from (31).

The synthesis procedure is described as follows:

Step 1. Take the given complex-valued memory pattern
set ΛΛΛ = {V1, . . . ,Vm+1} as outputs of CHNN
(1) and calculate the corresponding state vec-
tors ur(r = 1, . . . ,m+1) by (26).

Step 2. Check the memory pattern vectors {Vr} and {ur}.
If they satisfy the constraint (39), then continue
step 3,or else another synthesis method is needed.

Step 3. Calculate XAR1, XAR2, XAI1 and XAI2 by (43)
and (44), respectively.

Step 4. For the given attractive domain parameters P
and Q, solve LMIs(45) and (46) and get posi-
tive definite diagonal matrix S, T and variable
α .

Step 5. Calculate the complex-valued weight matrix A
by Equation(42 44) and the complex-valued thresh-
old vectors I by Equation(31).

4. Example

In this section, we give a numerical example to show
the effectiveness of our results in this paper. The LMI
is solved by the LMI-Toolbox in MATLAB, and the
differential equations are calculated numerically via
the Runge-Kutta approach with a time step 0.01.

4.1 Selection of CHNN model
In the following example, we design network (1)

to store two complex-valued memory vectors and re-
call test vectors in given attractive domain, where the
number of neurons is n = 3, time constant ci = 2.2 (i

= 1,2,3), and complex-valued activation function is
selected as

fi(ui) = tanh(uR
i )+ i tanh(uI

i )(i = 1,2,3). (47)

It is easy to know that both of the real and imaginary
part of such activation function are bounded between
−1 and 1, and satisfy local Lipschitz conditions . Here
we select the Lipschitz constants as

G = diag(G1,G2,G3) = diag(2,2,2),

H = diag(H1,H2,H3) = diag(2,2,2).

4.2 Selection of memory vectors
To choose the memory pattern vectors, three points

need to be considered:

1. From activation function (47), all the memory
and test vectors must be in set ΛΛΛ = {V∈C3,VR ∈
(−1,1)3,VI ∈ (−1,1)3}.

2. Considering Remark 1, the desired memory pat-
tern vectors V 1 and V 2 must satisfy constraint
(39).

3. In order to demonstrate the attractive domain
around each memory pattern vector can be large
enough, neither the real part nor the imagine
part is close to −1 or 1.

According to above consideration, we choose ran-
domly V 1 in set at first. And then we solve the corre-
sponding V 2 to satisfy constrain (39).

4.3 Selection of attractive domain
To decide the parameter matrix P and Q of the at-

tractive domain, both the Euclidean distance between
the two memory vectors and the definition domain are
taken into account.

4.4 A numerical example
Table 1 shows two memory vectors V1 and V2 which

are specified to be stored in CHNN (1) and the corre-
sponding state vectors u1 and u2 . From Table 1 we
can see that the samples can satisfy constraint (39).
Thus we can get Hermitian weight matrix A by our
synthesis scheme.

We design the attractive domainM(P,Q) of the two
vectors by matrix P and Q, where P = diag(11.11,4,
11.11) corresponds to an ellipsoid with radius ,(0.3,
0.5,0.3),Q = diag(11.11,11.11,25) corresponds to an
ellipsoid with radius (0.3,0.3,0.2).
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


−2PC+2GSG PXAR1 +αPXAR2 PXAI1 +αPXAI2

∗ −S 0
∗ ∗ −T



 < 0 (45)




−2QC+2HTH QXAI1 +αPXAI2 PXAR1 +αPXAR2

∗ −S 0
∗ ∗ −T



 < 0 (46)

Table 1 Memory pattern vectors
0.3072+0.1705i
0.3072+0.1705iV1

−0.5012+0.2083i
−0.3299+0.6813i
−0.1156+0.3795iV2

0.6439+0.7238i
0.6371−0.5108i
0.5283−1.0179iV = V1−V2

−1.1451−0.5155i
0.3175+0.1722i
0.4389−0.7555iu1

−0.5509+0.2114i
−0.3427+0.8315i
−0.1161+0.3995iu2

0.7648+0.9155i
0.6602−0.6593i
0.555−1.1549iu = u1−u2

−1.3157−0.7041i
V∗u = u∗V = 4.0957

By Step3-Step5 in section 3.3, we get

S = diag(221.4173,221.4173,221.4173),

T = diag(219.2592,219.2592,219.2592),

weight matrix parameter α = −1.1382. The weight
matrix A and threshold vector I are,

A =




−0.463+0i 0.8783+0.3314i −0.3705+1.0122i
0.8783−0.3314i 0.1626+0i 0.02+1.4891i
−0.3705−1.0122i 0.02−1.4891i 0.5557+0i




I =




0.0012−0.2065i
−0.105−0.0212i
0.0139−0.1784i




Figure 1 shows the attraction of memory vector V1

and V2. The dashed ellipses represent the boundaries
of the attractive domain of V1 and V2. Each solid line
in the corresponding ellipse is the output trajectory of
CHNN(1) which starts from the ellipse boundary and

ends at V1 or V2 as time evolution. In Figure 1(a),
we choose 8 test vectors whose first element changes
on the ellipse in complex plane with the centre being
the first element of V1 or V2 , and the radius of real
axis 0.3 and the radius of imaginary axis 0.3, while the
other two elements are the same as the corresponding
V1 or V2 . Similarly, Figure 1(b) and 1(c) demonstrate
attraction of the second and the third element of V1

and V2

As counter-example, Figure 2 shows the change of
attraction in the third element of V1 and V2 with the
change of the free factor α in the connection weight
matrix A. From Figure 2, we can see that if the weight
matrix A is choosed unsuitable, the attraction can not
be guaranteed.

5. Conclusions

This paper proposes a designation scheme for the
complex-valued Hopfield neural network used as as-
sociative memory. Both equilibrium constraints and
stable conditions are considered in our designation.
The equilibrium equation is solved by singular value
decomposition. The stable conditions can be trans-
formed to a feasible solution problem in LMI, where
the parameter matrix of attractive domain is contained.
Thus guarantee the associative memory for the dis-
turbed patterns in the given attractive domain. How-
ever, qualitative analysis of the relationship between
the free submatrix or variable of weight matrix and
the attraction of the CHNN needs for further research.
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(a) the first element of V 1 and V 2

(b) the second element of V 1 and V 2

(c) the third element of V 1 and V 2

Figure 1 Attraction of V 1 and V 2 (α =−1.1382)

(a) α = 1

(b) al pha = 3

(c) al pha = 5

Figure 2 Attraction change with α
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