Search WWW Search
»Journal Description
»Call for Papers and Reviewers
»Author Guidelines
»Contents & Papers
»Call for Special Issues

Fuzzy Sliding Mode Controller of DFIG for Wind Energy Conversion


Ouassila Belounis1*, Hocine Labar 2


1 Department of Electrical Engineering, University Badji Mokhtar Annaba, PB 12, 23000 Annaba, Algeria
2 Laboratoire d’Electrotechnique d’Annaba (LEA), Department of Electrical Engineering, University Badji Mokhtar Annaba, PB 12, 23000 Annaba, Algeri


Wind turbine based on Doubly-Fed Induction Generator (DFIG) is gaining in the growing wind market. This paper describes a design method for the fight control of doubly-fed induction generator (DFIG) based on fuzzy sliding mode control, based on the coupling of the fuzzy logic control and sliding mode control. This technique is defined on general, yet detailed. To ensure this requirement a detailed decoupled modeling of DFIG is presented. The relationship between the control parameters and the desired active and reactive power is provided and tested. The main goal achieved by the control strategy is to control the amount of active and reactive power produced by the doubly fed induction generator and injected in the main grid according to the power references derived from turbine’s mechanical power and the grid operator. The results of simulation are conducted to validate the theory and indicate that the control performance of the DFIG is satisfactory and the proposed fuzzy sliding mode control (FSMC) can achieve favorable tracking performance.


Doubly-fed induction generator (DFIG), Fuzzy sliding mode vontrol (FSMC), MPPT control, Sliding mode control (SMC), Wind turbine.

Full Text:

  1. L. Xiangjie, H. Yaozhen, “Sliding mode control for DFIG-based wind energy conversion optimization with switching gain adjustment”, IEEE Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, pp. 1213-1218, 2014.
  2. B. Hamane, M. L. Doumbia, M. Bouhamida, M. Benghanem, “Control of Wind Turbine Based on DFIG Using Fuzzy-PI and Sliding Mode Controllers”, IEEE Proceedings Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo (Monaco), French, pp. 440-448, 2014.
  3. E. Bogalecka, M. Kosmecki, “Control of reactive power in double-fed machine based wind park”, IEEE 13th International Power Electronics and Motion Control Conference (EPE-PEMC), Poznan, Poland pp. 1975-1980, 2008.
  4. T .Mesbahi, T. Ghennam, E.M. Berkouk, “A doubly fed induction generator for wind stand-alone power applications (simulation and experimental validation)”, IEEE XXth International Conference on Electrical Machines (ICEM), Marseille, France, pp.2028-2033, 2012.
  5. T. Ghennam, E.M. Berkouk, B. François, “Modeling and control of doubly fed induction generator (DFIG) based wind conversion system”, IEEE, Second International Conference on Power Engineering, Energy and Electrical Drives (Powereng), Lisbon, Portugal, pp. 507-512, 2009.
  6. S. EL-Aimani, B. Françoi, F. Minne, B. Robyns, “Modeling and simulation of doubly fed induction generators for variable speed wind turbines integrated in a distribution network”, 10th European conference on power electronics and applications, (EPE), Toulouse, France, pp.1-10, 2003.
  7. T. Ghennam, E.M. Berkouk, “Back-to-back three-level converter controlled by a novel space-vector hysteresis current control for wind conversion systems”, Electric Power System Research Journal, Elsevier, Vol.80, Issue 4, pp. 444-455, 2010.
  8. M. Machmoum, F. Poitiers, C. Darengosse, A. Queric, “Dynamic performances of doubly-fed induction machine for a variable-speed wind energy generation”, IEEE Proceedings of the International Conference on Power System Technology , Vol.4, New York, NY, USA, pp. 2431-2436, 2002.
  9. R. Cheikh, H. Belmili, S. Drid, A. Menacer, M.Tiar, “Fuzzy logic control algorithm of grid connected doubly fed induction generator driven by vertical axis wind turbine in variable speed”, IEEE Proceedings of the 3rd International Conference on Systems and Control, Algiers, Algeria, pp. 439-444, 2013.
  10. E.S. Abdin, W. Xu, “Control design and dynamic performance analysis of a wind turbine induction generator unit”, IEEE Transactions on energy conversion, Vol.15, No.1, pp. 91-96, 2000.
  11. B. Boukhezzar, “Sur les stratégies de commande pour l'optimisation et la régulation de puissance des éoliennes à vitesse variable ”, Thèse de Doctorat, Université Paris XI UFR scientifique Orsay, France, 2006.
  12. V.I. Utkin, “Sliding mode control design principles and applications to electric drives”, IEEE Transactions on Industrial electronics, Vol. 40, Issue 1, pp.23-36, 2002.
  13. M. Bedboudi, H. Kherfane, D.E. Khodja, S. Moreau, “Sliding mode based fault tolerant control of an asynchronous machine”, The Mediterranean Journal of Measurement and Control, Vol.10, No.3, pp.284-291, 2014.
  14. S. Zeghlache, D. Saigaa, K. Kara, A. Harrag, A. Bouguerra “Fuzzy based sliding mode control strategy for an UAV type quadrator”, The Mediterranean Journal of Measurement and Control, Vol.8, No.3, pp. 436-446, 2012.
  15. A. Isidori, “Nonlinear Control Systems”, 3rd edition, Springer Verlag, London, 1995.
  16. A. Bouguerra , S. Zeghlache, K. Loukal, D. Saigaa “Fault tolerant fuzzy sliding mode controller of brushless DC motor (BLDC motor)” , The Mediterranean Journal of Measurement and Control, Vol.12, No.2, pp. 589-597, 2016.
  17. F. Boumaraf, “Commande d’un aérogénérateur - Apport des techniques de l’intelligence artificielle”, Thèse de Doctorat, Université de Batna, Algérie, 2014.

INASS Home | Copyright@2008 The Intelligent Networks and Systems Society